domingo, 4 de octubre de 2015


OPERACIONES BASICAS CON MONOMIOS Y POLINOMIOS


MONOMIOS :



1. Suma de monomios

Sólo podemos sumar monomios semejantes.
La suma de los monomios es otro monomio que tiene la misma parte literal y cuyo coeficiente es la suma de los coeficientes.
     
axn + bxn= (a + b)xn

Ejemplo

2x2y3z + 3x2y3z = (2 + 3)x2y3z = 5x2y3

Si los monomios no son semejantes, al sumarlos, se obtiene un polinomio.

Ejemplo: 

2x2y3 + 3x2y3

2. Producto de un número por un monomio

El producto de un número por un monomio es otro monomio semejante cuyo coeficiente es el producto del coeficiente del monomio por el número.

Ejemplo: 

5 · (2x2y3z) = 10x2y3

3. Multiplicación de monomios

La multiplicación de monomios es otro monomio que tiene por coeficiente el producto de los coeficientes y cuya parte literal se obtiene multiplicando las potencias que tengan la misma base, es decir, sumando los exponentes.
     
axn · bxm = (a · b)xn + m
Ejemplo:
(5x2y3z) · (2y2z2) = (2 · 5) x2y3+2z1+2 = 10x2y5z3
 
4. División de monomios

Sólo se pueden dividir monomios cuando:
1Tienen la misma parte literal
2El grado del dividendo es mayor o igual que el del divisor
La división de monomios es otro monomio que tiene por coeficiente el cociente de los coeficientes y cuya parte literal se obtiene dividiendo las potencias que tengan la misma base, es decir, restando los exponentes.
     
axn : bxm = (a : b)xn − m


5. Potencia de un monomio
Para realizar la potencia de un monomio se eleva, cada elemento de este, al exponente que indique la potencia.
     
(axn)m = am · xn · m
 
Ejemplos: 

(2x3)3 = 23 · (x3)3= 8x9
(−3x2)3 = (−3)3 · (x2)3= −27x6


POLINOMIOS  

Suma de polinomios

Para sumar dos polinomios se suman los coeficientes de los términos del mismo grado.
P(x) = 2x3 + 5x − 3
Q(x) = 4x − 3x2 + 2x3
 
1.Ordenamos los polinomios, si no lo están.
 Q(x) = 2x3 − 3x2 + 4x
P(x) +  Q(x) = (2x3 + 5x − 3) + (2x3 − 3x2 + 4x) 

2.Agrupamos los monomios del mismo grado.
P(x) +  Q(x) = 2x3 + 2x3 − 3 x2 + 5x + 4x − 3

3.Sumamos los monomios semejantes.
P(x) +  Q(x) = 4x3− 3x2 + 9x − 3

Resta de polinomios

La resta de polinomios consiste en sumar al minuendo el opuesto del sustraendo.
P(x) − Q(x) = (2x3 + 5x − 3) − (2x3 − 3x2 + 4x)
P(x) −  Q(x) = 2x3 + 5x − 3 − 2x3 + 3x2 − 4x
P(x) −  Q(x) = 2x3 − 2x3 + 3x2 + 5x− 4x − 3
P(x) −  Q(x) = 3x2 + x − 3

Multiplicación de polinomios

Multiplicación de un número por un polinomio

Es otro polinomio que tiene de grado el mismo del polinomio y como coeficientes el producto de los coeficientes del polinomio por el número.
3 · ( 2x3 − 3 x2 + 4x − 2) = 6x3 − 9x2 + 12x − 6

Multiplicación de un monomio por un polinomio

Se multiplica el monomio por todos y cada uno de los monomios que forman el polinomio.
3 x2 · (2x3 − 3x2 + 4x − 2) = 6x5 − 9x4 + 12x3 − 6x2

Multiplicación de polinomios

P(x) = 2x2 − 3    Q(x) = 2x3 − 3x2 + 4x
Se multiplica cada monomio del primer polinomio por todos los elementos segundo polinomio.
P(x) ·  Q(x) = (2x2 − 3) · (2x3 − 3x2 + 4x) =
= 4x5 − 6x4 + 8x3 − 6x3 + 9x2 − 12x =
Se suman los monomios del mismo grado.
= 4x5 − 6x4 + 2x3 + 9x2 − 12x
Se obtiene otro polinomio cuyo grado es la suma de los grados de los polinomios que se multiplican.

División de polinomios

Resolver la división de polinomios:

P(x) = x5 + 2x3 − x − 8         Q(x) = x2 − 2x + 1
P(x) :  Q(x)
A la izquierda situamos el dividendo. Si el polinomio no es completo dejamos huecos en los lugares que correspondan.

A la derecha situamos el divisor dentro de una caja.
Dividimos el primer monomio del dividendo entre el primer monomio del divisor.
x5 : x2 = x3

Volvemos a dividir el primer monomio del dividendo entre el primer monomio del divisor. Y el resultado lo multiplicamos por el divisor y lo restamos al dividendo.
2x4 : x2 = 2 x2
 

Procedemos igual que antes.
5x3 : x2 = 5 x

Volvemos a hacer las mismas operaciones.
8x2 : x2 = 8 

10x − 6 es el resto, porque su grado es menor que el del divisor y por tanto no se puede continuar dividiendo.

x3+2x2 +5x+8 es el cociente.

http://www.vitutor.com/ab/p/a_3.html


VIDEO



https://www.youtube.com/watch?v=NK3nW7oQhqQ

No hay comentarios.:

Publicar un comentario